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A CONCATENATED CODING SCHEME FOR

ERROR CONTROL

ABSTRACT

In this paper, a concatenated coding scheme for error control in data

communications is analyzed. In this scheme, the inner code is used for both

error correction and detection, however the outer code is used only for error

detection. A retransmission is requested if the outer code detects the pres-

ence of errors after the inner code decoding. In this paper, the probability

of undetected error of the above error control scheme is derived and upper

bounded. Two specific example schemes are analyzed. In the first example

scheme, the inner code is a distance-4 shortened Hamming code with generator

polynomial (X+1)(X6+X+1) - X 7+X 6+X 2+1 and the outer code is a distance-4

shortened Hamming code with generator polynomial (X+1)(X15+X14+X13+X12+X4+X3

+X 2 +X+1) - X 16+X 12+X 5+1 which is the X.25 standard for packet-switched data

network. This example scheme is proposed for error control on NASA tele-

command links. In the second E ,-ample scheme, the inner code is the same as

that in the first example scheme but the outer code is a shortened Reed-

Solomon code with symbols from GF(2 8 ) and generator polynomial (X+1)(X+ a)

where a is a primitive element in GF(2 8 ). We show that both example schemes

provide very high reliability.



1. Introduction

Consider a concatenated coding scheme for error control for a binary sym-

metric channel with bit-error -rate E<1/2 as shown in Figure 1. Two linear

block codes, C  and Cb , are used. The inner code C f, called frame code, is an

(n,k) code with minimum distance d f . The frame code is designed to correct

t or fewer errors and simultaneously detect a(X>t) or fewer errors where t+X+1<

d f . The outer code C  is an (n b ,k b ) code with minimum distance d  and nb mk,

where m is a positive integ er. The outer ccde is designed for error detection

only.

The encoding is done in two stages. A message of k b bits is first encoded

into a codeword of n  bits in the outer code C b . Then the nb bi, wn:d is

divided into m k-bit segments. Each k-bit segment is encoded into an n-bit

word in the frame code C f . This n-bit word is called a frame. Thus, cor-

responding to each kb -bit message at the input of the outer code encoder, the

output of the frame code enc ,,der is a sequence of m frames. This sequence of

m frames is called a blcck. A two dimensional block format is depicted in

Figure 2.

The decoding consists of error correction in frames and error detection

in m decoded k-bit segments. When a frame in a block is received, it is

decoded based on the frame code C f . The n-k parity bits are then removed from

the decoded frame, the k-bit decoded segment is stored in a. buffer. If there

are t or fewer transmission errors in a received frame, the errors will be

corrected and the decoded segment is error free. If there are more than a

errors in a received frame, the decoded segment may contain undetected

errors, After m frames of a block have been decoded, the buffer contains m

k-bit decoded segments. Then error detection is performed on these m decoded

segments based on the outer code C b . If no error is detected, the m decoded
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segments are assumed to be error free and are accepted by the receiver. If

the presence of errors is detected, the m decoded segments are discarded and

the receiver requests a retransmission of the rejected block. Retransmission

and decoding process continues until a transmitted block is successfully

received. Note that a successfully received block may be either error free or

contains undetectable errors.

The error control scheme described above is actually a combination of

forward-error-correction (FEC) and automatic-repeat-request (ARQ), called a

hybrid ARQ scheme [1). The retransmission strategy determines the system

throughput, it may be one of the three basic modes namely, stop-and-wait,

go-back-N or selective-repeat. The reliability is measured in terms of the

probability of undetected error after decoding.

In this paper, the probability of undetected error of the above error

control scheme is derived and upper bounded. Two specific example schemes are

analyzed. In the first example scheme, the inner code is a distance-4 short-

ened Hamming code with generator polynomial (X+1)(Xb,X+1) = X 7+X 6+X 2+1 and the

outer code is a distance-4 shortened Hamming code with generator polynomial

(X+1) (X15 +X14 +X13 +X12 +X4 +X3 +X2 +X+l ) = X
16 +X12

+X5 +1 which is the X.25 standard

for packet-switched data network. This example scheme is proposed for error

control on NASA telecommand links. In the second example scheme, the inner

code is the same as that in the first example scheme but the outer code is a

shortened Reed-Solomon code with symbols from GF(2 8 ) and generator polyno-	 r

mial (X+1)(X+a) where a is a primitive element in GF(2 8 ). We show that both

example schemes provide very high reliability.

2. Probability of Undetected Error

The probability P f (eo ,c) that a decoded frame contains a nonzero error

vector e  after decoding is given by [2,3,4],
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t min ( t-i,n-w)

P f (eO ,E) _	
(i)(njw)Ew - i+j (1-E)n-w+i-j

i=0	 j=0

where w is the weight of e o . The right-hand side of (1) only depends on w, t

and E, we denote the right-hand side of (1) as Qt(w,E).

Recall that a codeword in the outer code C  consists of m k-bit seg-

ments. At the receiver, error detection is performed on every m decoded seg-

ments based on Cb . Let Pb (e,E) denote the probability that the decoded word

contains an undetectable error pattern a (a nonzero codeword in C b ). For a

codeword v in C	 let v (j) denote the
b,	 j-th segment of v, and let w j (v) be

the weight of the codeword in frame code C f into which v (j) is encoded.

Then it follows from (1) that for an undetectable error pattern a in a block

M
Pb (e,E) = II Qt(wj(e),C)

j=1

Let Pua ) (E) be the probability of undetected error for the outer code Cb.

Then

P (b) (E)
eEC -{0} 

P
b 

(e, C)	 (3)

For l <* < j2<...<jh^m, consider the set of codewords in C  where nonzero

bits are confined in the j l -th segment, the j 2 -th segment, ..., and the j h th

segment. This set of codewords forms a subcode of C b , call a ( j l1 j 21 ... I

j. l )-subcode of C b and den_)ted by C b (j 1 1j 2 '	 jh)' If Cb is a cyclic or

shortened cyclic code, then

1. for h=1, all ( j 1 )-subcodes of C  are equivalent;

2. for h?2, all (j l ,j 2' ... 
lih)-subcodes of C b with the same 32-31,33-)2'

13h-
Ih-1 are equivalent codes and are called h-segment (j2-ill

j3-32"0••rjh-jh-1) subcodes of Cb.

	Consider a (j 1' i 2 ,...,j h )-subcode of Cb .	 Let i l ,i 2 ,...,i h,r l ,r 2 , ... ,rh

be a set of integers for which 0 <i
q—	 q—
<k and 0<r <n-k with 1 <q<h. Let

—	 —

(1)

(2)

-4-



3 1 0j 2 1 ... ,jh
A (i l ,r l )(i

2 ,r 2
) ... (ih,rh) denote the number of codewords v in 

Cb (j 1 Ij 2 " ..'jh)

such that, for 1LcL< h, the j q-th segment v (3q) of v has weight i q and w j(v)
q

iq +rq . Then it follows from (2), (3) and the definition of

Ajl,j2, ... ,jh	
that

( i l , r
I 

His 21 r 2 ) ... (ih,rh)

MP (b) (1) = I Ql(O,t)m-h{
	

Lud 
h=1	 1<jl<j2< ... <jh<m

C A31,j2, ... ,j h	 h

I LR ( i l , r 1 ) ( i 2 , r 2 ) ... ( ih , rh )	 II Q t (iq+rq ,E) } , (4)
h	 q=1

where

IRh = t((il,r1),(i2'r2),...,(ih,rh))

h
and d b-<	 i <
 q-'b
q=1

1<i
q-	 q-	 f- q q
<k, 0<r <n-k, d <i +r '1<q<h)

-	 -	 --

If C  is a cyclic or shortened cyclic code, then Eq. (4) can be simplified as

follows:

m	
C

	

u)	 m-h{
(E) _	 Qt (0, E )

	

Pd 	 /
	h=1	 1<jl<j2< ... <j <m
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C	
A 3 1 r3 2 , .... 3h	

h

q ^^

	

I LR	 (i l ,r l H i2,r2)...(ih,rh) 0-1 
Qt (i +r E)	 (5)

h 

From (4) we see that, if we know the detail weight structure of Cb(J1,J2^

.... j h), the error probability P 
(b) (

E ) can be computed. However, for a
ud

	given C, it is not easy to find 
A 1132 )1	 13h2)... (ih,rh)	

To overcome thisb 

difficulty, we have derived upper bounds on the terms on the right-hand side

of (5) (5). We assume that e < (t+2)/(3t+4). suppose that t=1 and the inner

code is an even-weight code and the outer code is a cyclic or shortened cyclic

even-weight code. Let 
{A(b)I 

be the weight distribution of the outer code Cb'

We have obtained the following bound on Pud(E):
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10	 n-k

	

Pua)( E) ` m L	
CGA(i,r)Q1(i+r,E)

i=db r=0

	

m	 2

	

+ I	 (m-j+l)	 Al'3	 TI Q1(E(ip),E)

	

j=2	 ii,i2<10 1 2 p=1

1<il,i2

	

+ { 1^ 	 (A 
(b) 

-MAl) -	 (m - j+l)	 A"' )Q (4,F-) 3

i=db i
	 i	

j=2	 il,i2<10 i
l ,i 2 1

i<i1,i2

+ min{( 3 ) 0) 2 (3) , A
(b) ^Q 1

(4,E) 3 + A(b)Q1(6,E)

+	 A4b)Q1(4,E)1 + I A4b+2Q1(4,E)i-1Q1(6,E)

	

i=4	 i=3

+ (26/nb )
-26

(1-26/nb )
nb-26

 Q l (4,E) 5Q 1 (6,E)	 (6)

where

31 r3A	 - n--k n--k	 nC-k Ajl,j2,---,jh	
( )

(i ,r )(i , 2
	 h

r )...(i ,r )
h	 r 1 =0 r 2=0	 rh=0	 1 1	 2	 h

and

d f , for i < d 

i, for even i and i > d 

' i+l, otherwise.

On the other hand, it follows from (5) that

10 n-k

Pua ) (E) > m Ql(O,E)m-1 I	 I A(i,r)Ql(i+r,E)	 (9)

i=db r=0

3. Examples

We cons;der two examples of the concatenated coding scheme.

Example 1: The frame code C  is a distance-4 Hamming code with generator

polynomial,

gf M = (X+1)(X6+X+1) = X 7 +X 6+X 2+1 ,

where X 6 +X+1 is a primitive polynomial of degree 6. The maximum length of

this code is 63. This code is used for single error correction. The code is
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capable of detecting all the error patterns of double and odd number errors.

The outer code is also a distance-4 shortened Hamming code with generator

polynomial,

15 14 13 12 4 3 2	 16 12 5
9 0 (X) - (X+1)X +X +X +X +X +X +X +X +1) - X +X +X +1

where X 15+X 14+X 13+X 12+X 4+X 3+X 2+X+1 is a primitive poly ► -ial of degree 15. We

assume that the number of frames in a block is greater than 3 and less than

65. The 16 parity bits of this code is used for error detection only. This

scheme is proposF,d for NASA telecommand system. For this example upper bounds

on the probabili t y of undetected error have been computed in [5j.

Example 2: This example is a variation of example 1. The frame code C  is

the same as example 1. The outer code is a shortened Reed-Solomon code with

generator polynomial (X+1)(X+a) over GF(2 8 ), where a is a root of

X8+X4+X3+X2+1.

For various E, k, and m, the bound or Dud)(E) given by (6) is evaluated

and plotted in Figures 3 to 5.
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Figure 1 A concatenated coding scheme
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